|
In the following we solve the second-order differential equation called the hypergeometric differential equation using Frobenius method, named after Ferdinand Georg Frobenius. This is a method that uses the series solution for a differential equation, where we assume the solution takes the form of a series. This is usually the method we use for complicated ordinary differential equations. The solution of the hypergeometric differential equation is very important. For instance, Legendre's differential equation can be shown to be a special case of the hypergeometric differential equation. Hence, by solving the hypergeometric differential equation, one may directly compare its solutions to get the solutions of Legendre's differential equation, after making the necessary substitutions. For more details, please check the hypergeometric differential equation. We shall prove that this equation has three singularities, namely at ''x'' = 0, ''x'' = 1 and around ''x'' = infinity. However, as these will turn out to be regular singular points, we will be able to assume a solution on the form of a series. Since this is a second-order differential equation, we must have two linearly independent solutions. The problem however will be that our assumed solutions may or not be independent, or worse, may not even be defined (depending on the value of the parameters of the equation). This is why we shall study the different cases for the parameters and modify our assumed solution accordingly. == The equation == Solve the hypergeometric equation around all singularities: : 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Frobenius solution to the hypergeometric equation」の詳細全文を読む スポンサード リンク
|